Mendocino County
University of California
Mendocino County

ANR Blogs

How UC helped turn onion waste into clean energy

Ten years ago, a California family's food-processing business was booming -- so much so that it was in danger of drowning in its own success. A new idea out of UC Davis helped them stay on top.

In 1983, Gills Onions had been asked by La Victoria Salsa to provide large quantities of high-quality, fresh-cut onions when no automated equipment and processes existed. With typical farmers’ "can do" attitude, brothers Steve and David Gill and their 16 employees developed a system to peel, slice, dice and deliver the first fresh-cut onions in the food processing industry.

By 2000, the Gills and their 400 employees were processing millions of pounds of sliced and diced onions weekly for restaurants, salsa makers and grocery stores. They had become the largest fresh-cut onion processor in the nation.

But they were being buried in onion waste -- the unused tops, tails and skins, which account for about 40 percent of the original onion mass.

Previously, their solution had been to truck these onion leftovers from their Oxnard processing plant to surrounding farm fields and plow them into the soil as compost. But now they had so much waste – up to 1.5 million pounds every week - that this solution had become too costly and environmentally unsustainable.

So they went looking for new ideas. They found them in the bright minds and laboratories of UC Davis research scientists and students.

UC Davis engineering professor Ruihong Zhang, a leading innovator with a passion and genius for turning food waste into energy, determined that onion juice was very good food for methane-producing microbes. With her research data, Gills’ engineers and contractors developed an anaerobic digester system that turns their leftover onions into electricity.

They squeeze the onions, feed the juice to the microbes, and use the methane that the microbes excrete to run a fuel cell that makes electricity.

Today that electricity powers the Oxnard processing plant. This year, they expect to save $700,000 on power bills and $400,000 on trucking costs. (They even sell the squeezed-out onion pulp, as a high-quality cattle food.)

Thanks to Professor Zhang and the University of California, Gills’ waste problem is now an energy source and new product line. The firm expects to make back its $9.5 million capital investment in six years.

And they are famous in the produce and energy industries. People come from all over the world to learn from their experience. They are winning engineering and environmental awards. (They are especially proud of beating the Dallas Cowboys' new $3 billion super-high-tech football stadium in a competition by the American Council of Engineering Companies.)

The help Gills Onions needed with their business problem was available to them, and the rest of the world, in part because California's public research universities get financial support from the private sector. In Ruihong Zhang's UC Davis lab alone, in the seven years she has been perfecting waste-to-energy technology, six donors (including Gills Onions) have given $221,000 to pay graduate student researchers' stipends, tuitions and fees; pay postdoctoral scholars; and purchase bioreactors and laboratory supplies. They also have donated $305,000 worth of equipment.

In fact, California's public colleges and universities have done more to make this state an international agricultural powerhouse than most of us realize. Yet state funding for public universities is unpredictable, and when universities seek philanthropic support, they risk criticism that they are privatizing or selling out – even though private support remains a small percentage of public university budgets (at UC Davis, it’s less than 7 percent).

The University of California needs California businesspeople to support its programs -- with their influence and their wallets. What sector of the state has more to lose if the new ideas dry up?

(Photo: Karin Higgins, UC Davis)
(Photo: Karin Higgins, UC Davis)

UC Davis professor Ruihong Zhang turns waste into energy.

Posted on Wednesday, January 5, 2011 at 8:08 AM
  • Author: Sylvia Wright

Current research: steam disinfestation for almond replant

2010 ABC  Steam auger Hanson et al

Happy New Year!Today I thought I'd attach a poster presentation from the recent 38th Annual Almond Industry Conference.  The attached poster has some information on an ongoing research project in which we are testing thermal disinfestation as an...

Posted on Sunday, January 2, 2011 at 6:00 PM

California Agriculture article on glyphosate resistant hairy fleabane

This is one part follow up to my previous post on glyphosate resistance and one part test of a tool to imbed articles in the blog. The above frame has a 2008 report that Anil Shrestha, Kurt Hembree, and I wrote for California Agriculture on...

Posted on Tuesday, December 28, 2010 at 9:36 PM

Glyphosate-resistant horseweed (mare's tail) in the Central Valley

horsweed mature WeedsofCalif

I thought I'd followup on my post last week about herbicide resistant weeds with a little more detail on our recent (and ongoing) work on glyphosate-resistant horseweed (Conyza canadensis) which is also known as mare's tail.In 2006 and 2007, we...

Posted on Monday, December 27, 2010 at 4:02 PM

Want to report SOD? We’ve got an app for that!

When the great outdoors is your research laboratory, gathering data can be a challenge. To get a broader perspective on the extent of damage caused by sudden oak death, a UC Berkeley Cooperative Extension geographer is using crowd sourcing to enhance her research on the disease that has killed over a million of California’s iconic oak trees since 1995.

Maggi Kelly, UC Berkeley Cooperative Extension specialist, started collecting data from community members through her OakMapper website in 2001. Now she has a mobile application for smartphones

.

While out in a park or forest, iPhone users can use the new OakMapper mobile app to report sightings of trees killed by Phytophthora ramorum, the plant pathogen that causes SOD. Onsite, participants can note the symptoms they see, such as seeping, bark discoloration, crown discoloration, dead leaves, shoot die-back, fungus, beetle frass and beetle bore holes.

The OakMapper app, created by scientists in the UC Berkeley Geospatial Innovation Facility, uses the phone's built-in GPS to identify the participant’s location when the data is submitted.

They also can describe the environmental setting, such as residential landscape or natural forest.

“Many of the challenging natural resource problems that we face today – like invasive species, fire, climate change – are large in spatial scale and impact diverse public groups,” said Kelly, director of the UC Berkeley Geospatial Innovation Facility. “Addressing these challenges often requires coordinated monitoring, efficient data collection, and increased communication and cooperation between scientists and citizens.

Science can benefit from your powers of observation. We all benefit by becoming informed about problems such as sudden oak death.

If you are like me, a person who sometimes doesn’t recognize coworkers outside the office, you may choose a spectator role. You can use the app to look at the maps to see where SOD is taking down trees.

For more information about OakMapper and its app, visit oakmapper.org. The OakMapper app can be downloaded for free from the iTunes app store.

I’ve heard of two other apps developed at UC to collect natural resources-related data from other scientists and interested members of the public.

You can use UCLA’s What’s Invasive apps to report locations of top invasive plants and animals, which compete with California’s native fauna and flora. By submitting location data and setting up top invasive lists for your area, you can assist scientists monitoring the spread of the destructive invasive plants and animals. Images and brief descriptions in the app help with identification. The apps are free and available for the Android and iPhone.

Soon you will be able to report roadkill sightings on your iPhone. The UC Davis Road Ecology Center has submitted to the iTunes store an iPhone app for reporting roadkill. Until the app becomes available sometime in January, you can report your observations to the California Roadkill Observation System via the Web at http://roadecology.ucdavis.edu/CROS.html.

Another cool app has been developed by the UC Davis Soil Resource Laboratory to deliver information to scientists, growers and gardeners about the properties of their soil. While standing in the field, the user can receive location-based information on a GPS-enabled cell phone. The app is available for free for iPhone and Android OS platforms.

Which science-related apps are you using? You can share them in the comments section or e-mail me at pskanrice@ucdavis.edu.

Posted on Wednesday, December 22, 2010 at 6:33 AM

First storyPrevious 5 stories  |  Next 5 stories | Last story

 
E-mail
 
Webmaster Email: jtwilli@ucanr.edu